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Abstract. Given a set A C S, of m permutations of [n] and a distance
function d, the median problem consists of finding a permutation 7*
that is the “closest” of the m given permutations. Here, we study the
problem under the Kendall-7 distance which counts the number of pair-
wise disagreements between permutations. This problem has been proved
to be NP-hard when m > 4, m even. In this article, we investigate new
theoretical properties of A that will solve the relative order between pairs
of elements in median permutations of A, thus drastically reducing the
search space of the problem.
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Appendix

Proof of Proposition ?7: Let A be the following set of permutations of [n]:
-A = {017027' ey Oqy Yy T, T2, . .. aﬂ-a}a

where each o;, 1 < i < q, is a different permutation beginning with element 1
followed by element 2; each m;, 1 < i < a, is a different permutation ending with
element 1 followed by element 2, and v is a permutation beginning by element
2 and ending by element 1 (in « elements 1 and 2 are thus separated by a set K
of k elements). Note: n = k + 2.

So, in 2a permutations, element 1 is before element 2, and in only one, element
2 is before element 1. Even if the majority order for this pair of elements is 1
before 2, we can show that for an arbitrary a, if k& > 2a — 1 then the median
of A will be of the form 2K1, more precisely the median will be 2al where 2
is before 1 and where « is the optimal permutation of the elements of set K
(i.e. 7 = 2al is a median of A). The idea is that the ”pressure” of the set K
on elements 1 and 2 will be stronger than the interaction in between 1 and 2.
We then choose a minimal a such that 2311 > s and k = 2a to complete the
construction.

First, we observe that the cost of every element of K is identical in relation
to 1 and 2 simply because the elements of K are always grouped together in the
permutations of A. So, in a certain permutation of A, if an element x € K is
on the left (resp. on the right) of 1 then all other elements of K will be on the
left (resp. on the right) of 1. It goes the same way for the left/right of 2 and it
applies in all permutations of A.

Second, we can state that there exist at least one optimal arrangement for
the elements of K based on the order they were placed in the permutations of A.
Let « be any optimal arrangement for the elements of K and C, its associated
cost.

The two previous points are leading to this observation: a median permu-
tation of A will have the elements of K arranged following «. This is because
of the fact that if a supposed median permutation have the elements of K ar-
ranged in an non-optimal way, we could make a bunch of swaps between those
elements of K, omitting 1 and 2, so that their relative order will become an
optimal arrangement, thus lowering the cost of the permutation.

Now, a median of A can either be of the form K;1K52K3 or of the form
K12K51K3, where the K; are possibly empty subsets of K, such that U§:1 K, =
K, K;NK; =0ifi # j, |K;| = k; and k1 + ko + ks = k. The order of the
elements of K is known and follows «, so the only variables to be set are the
numbers of elements to be placed in K, Ko and K3. In other words, we have «
and we need to place in 1 and 2 in an optimal way to attain the median.

If our median is of the form K;1K52K3 we have

1 2 3

dKT(K11K22K3,.A) = a(2k1 + kz) +a(k2 + 2]€3) + 1(1 + k1 + 2ko + kg) +C,
=20k + 1+ k1 4 2ky + k3 + Co,




where terms 1, 2 and 3 capture the distance with respectively the permutations
0i, 1 < i < a, the permutations 7;, 1 < i < a, and the permutation v of A,
for the pairs (1,z), (2,x) and (1,2), x € K. The cost for the pairs (z1,x2),
r1,T9 € K, is counted in C,,.

Following the same logic, if our median is of the form K;2K51K3, we have

dKT(K12K21K3,A) = a(2k1 + k2 + 1) + a(kg + 2]€3 + 1) + 1(k1 + k?g) + Ca
= 2ak 4+ 2a + k1 + k3 + C,.

If we try to minimize dxr(K11K22K3,.A), we will have to put all the k
elements of K in either K7 or K3 because putting them in K5 will have a doubled
penalty for the cost. Doing so, the minimal cost for K11K52K3 is 2ak+14+k+C,,.
Now, if we try to minimize dxr(K12K21K3,.A), we will have to put all the k
elements of K in K5 because putting them in either K7 or K3 will give a penalty
whereas K> is ”silent” in the cost function. So, the minimal cost for K12K51K3
is 2ak + 2a + C,. Since it is stated in the proposition that & > 2a — 1, the
minimal cost of K11K52K3 is strictly greater that the minimal cost of K12K51K3
(2ak + 14k + Cy > 2ak + 2a + C,).

This gives us that median permutations 7* of A are of the general form
K12K51K3, where K7 and K3 are empty. Thus 7* is of the form 2K1 or more
precisely m* = 2al, where « be any optimal arrangement for the elements of K
with respect to A. Element 2 is favored to element 1 in the median, regardless of
the big proportion of permutations of A favoring 1 to 2, which finish the proof
of non-existence of a %-majority bound. [ |

Other tables:

Table 1: Efficiency of the Major Order theorem 1.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table 4]

m\n] 8 [ 10 [ 15 ] 20 | 25 [ 30 [ 40 [ 50 | 60 | 80 [ 100 |
3 [10.4560[0.4155]0.3603]0.3339]0.3170]0.3056]0.2914[0.2840[0.2785[0.2712[0.2667
4 10.3672(0.3224(0.2595|0.2274]0.2071|0.1939(0.1768|0.1673|0.1608|0.1514|0.1470
5 110.3076]0.2591|0.1928|0.1597|0.1403(0.1272(0.1110/0.1011[0.0943|0.0859|0.0823
10 1/0.1449]0.1004|0.0530(0.0344|0.0251|0.0198]0.0139/0.0108|0.0089|0.0068|0.0058
15 1/0.0734]0.0432|0.0165(0.0085|0.0052|0.0036|0.0020/0.0014[0.0010|0.0006|0.0005
20 {]0.0387/0.0193|0.0054|0.0022(0.0011|0.0007|0.0003|0.0002|0.0001|0.0001 |0.0000
25 1]0.0209]0.0088|0.0018|0.0006|0.0003|0.0001|0.0000[0.0000|0.0000{0.0000|0.0000
30 {]0.0114/0.0041|0.0006|0.0002|0.0001|0.0000|0.0000{0.0000|0.0000{0.0000/0.0000
35 {]0.0063]0.0020(0.0002|0.0000(0.0000/0.0000|0.0000{0.0000|0.0000{0.0000/0.0000
40 {/0.0035(0.0009/0.0001[0.0000|0.0000[0.0000|0.0000{0.0000|0.0000|0.0000[0.0000
45 {/0.0020|0.0004/0.0000[0.0000|0.0000[0.0000|0.0000|0.0000|0.0000|0.0000[0.0000
50 {|0.0011]0.0002|0.0000/0.0000(0.0000/0.0000|0.0000[0.0000|0.0000[0.0000/0.0000




Table 2: Efficiency of the Major Order theorem 2.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table

[m\n]| 8 ] 10 [ 15 [ 20 | 25 [ 30 [ 40 | 50 [ 60 [ 80 [ 100 |
3 10.6292[0.5784]0.4981]0.4513]0.4194]0.3962[0.3651[0.3462[0.3324[0.3139[0.3020
4 10.5652|0.5333]0.4711|0.4265[0.3923|0.3661|0.3268|0.3003|0.2801]0.2504|0.2320
5 1/0.5966]0.5469|0.4648|0.4131|0.3761|0.3479(0.3073|0.2781[0.2555|0.2232|0.2033
10 1/0.5730(0.5253|0.4435(0.3886|0.3493(0.3193[0.2749/0.2439(0.2197|0.1878|0.1656
15 1/0.5929(0.5377|0.4453|0.3863|0.3448|0.3129(0.2679|0.2361[0.2122|0.1791|0.1561
20 1|0.5820/0.5310(0.4415|0.3832(0.3415|0.3097|0.2647(0.2323|0.2089(0.1750|0.1523
25 1/0.5979]0.5396|0.4444|0.3842(0.3415|0.3099|0.2625(0.2317|0.2074|0.1736|0.1500
30 [|0.5878]0.5349(0.4426|0.3828|0.3403|0.3082|0.2616|0.2293|0.2055(0.1715|0.1498
35 1/0.5996/0.5419(0.4455|0.3843(0.3407(0.3083|0.2612|0.2285|0.2050{0.1711(0.1481
40 {/0.5922|0.5374/0.4439(0.3828|0.3402/0.3070|0.2603|0.2288|0.2038/0.1707]0.1483
45 {(0.6016|0.5435|0.4461]0.3848|0.3405(0.3084|0.2615(0.2278|0.2038/0.1708]0.1472
50 [|0.5956/0.5395(0.4440|0.3833(0.3402(0.3072|0.2600[0.2284/0.2037|0.1700|0.1467

Table 3: Efficiency of the Major Order theorem 3.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table

[/m\n]| 8 ] 10 [ 15 [ 20 | 25 [ 30 [ 40 | 50 [ 60 [ 80 [ 100 |
3 ]0.7642[0.7179]0.6345]0.5792[0.5378]0.50590.4608]0.4312[0.40860.3775[0.3563
4 0.6010/0.5757|0.5201|0.4761|0.4406|0.4127|0.3700(0.3404|0.3176|0.2833|0.2612
5 1/0.7381]0.6853|0.5813|0.5046|0.4470|0.4038|0.3456|0.3073|0.2793|0.2413/0.2191
10 |{0.6440|0.60190.5173|0.4515|0.4012(0.3617|0.3040(0.2649|0.2354|0.1979|0.1726
15 |(0.7392|0.6732|0.5445(0.4581|0.3987|0.3544|0.2946(0.25430.2254|0.1869|0.1612
20 (0.6739]0.6262|0.5248|0.4484/0.3917(0.3486|0.2896|0.2491(0.2209|0.1819/0.1566
25 |(0.74630.6774|0.5440|0.4557/0.3939(0.3497|0.28670.2480(0.2186|0.1800/0.1540
30 |0.6899/0.6391|0.5307|0.44960.3904(0.3464|0.2852|0.2448(0.2164|0.1775|0.1536
35 |0.7490|0.6804|0.5467|0.4563|0.3928|0.3474|0.2846|0.2438|0.2156|0.1770(0.1517
40 (/0.7008|0.6473(0.5349|0.4505|0.3905|0.34480.2833|0.2438|0.2142|0.1764|0.1518
45 (0.7522(0.6836|0.5484/0.4570(0.3924|0.3473|0.2847|0.2427|0.2141(0.1764|0.1507
50 [0.7095/0.6533]0.5367|0.4518|0.3908|0.3450|0.2827|0.2431|0.2138)0.1755|0.1501

Table 4: Number of instances generated and calculated for each couple m\n
(depending only on n)

n 8 10 15 20 25 30 40 50 | 60 | 80 | 100
# instances|100000/100000{100000{100000|100000{50000{20000{10000{8000{4000{2000




	Medians of permutations : building constraints 

