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Abstract. Given a set A ⊆ Sn of m permutations of [n] and a distance
function d, the median problem consists of finding a permutation π∗

that is the “closest” of the m given permutations. Here, we study the
problem under the Kendall-τ distance which counts the number of pair-
wise disagreements between permutations. This problem has been proved
to be NP-hard when m ≥ 4, m even. In this article, we investigate new
theoretical properties of A that will solve the relative order between pairs
of elements in median permutations of A, thus drastically reducing the
search space of the problem.

? supported by NSERC through an Individual Discovery Grant (Hamel) and by
FRQNT through a Master’s scholarship (Milosz)



Appendix

Proof of Proposition ??: Let A be the following set of permutations of [n]:

A = {σ1, σ2, . . . , σa, γ, π1, π2, . . . , πa},

where each σi, 1 ≤ i ≤ a, is a different permutation beginning with element 1
followed by element 2; each πi, 1 ≤ i ≤ a, is a different permutation ending with
element 1 followed by element 2, and γ is a permutation beginning by element
2 and ending by element 1 (in γ elements 1 and 2 are thus separated by a set K
of k elements). Note: n = k + 2.

So, in 2a permutations, element 1 is before element 2, and in only one, element
2 is before element 1. Even if the majority order for this pair of elements is 1
before 2, we can show that for an arbitrary a, if k > 2a − 1 then the median
of A will be of the form 2K1, more precisely the median will be 2α1 where 2
is before 1 and where α is the optimal permutation of the elements of set K
(i.e. π∗ = 2α1 is a median of A). The idea is that the ”pressure” of the set K
on elements 1 and 2 will be stronger than the interaction in between 1 and 2.
We then choose a minimal a such that 2a

2a+1 ≥ s and k = 2a to complete the
construction.

First, we observe that the cost of every element of K is identical in relation
to 1 and 2 simply because the elements of K are always grouped together in the
permutations of A. So, in a certain permutation of A, if an element x ∈ K is
on the left (resp. on the right) of 1 then all other elements of K will be on the
left (resp. on the right) of 1. It goes the same way for the left/right of 2 and it
applies in all permutations of A.

Second, we can state that there exist at least one optimal arrangement for
the elements of K based on the order they were placed in the permutations of A.
Let α be any optimal arrangement for the elements of K and Cα, its associated
cost.

The two previous points are leading to this observation: a median permu-
tation of A will have the elements of K arranged following α. This is because
of the fact that if a supposed median permutation have the elements of K ar-
ranged in an non-optimal way, we could make a bunch of swaps between those
elements of K, omitting 1 and 2, so that their relative order will become an
optimal arrangement, thus lowering the cost of the permutation.

Now, a median of A can either be of the form K11K22K3 or of the form
K12K21K3, where the Ki are possibly empty subsets of K, such that

⋃3
i=1Ki =

K, Ki

⋂
Kj = ∅ if i 6= j, |Ki| = ki and k1 + k2 + k3 = k. The order of the

elements of K is known and follows α, so the only variables to be set are the
numbers of elements to be placed in K1, K2 and K3. In other words, we have α
and we need to place in 1 and 2 in an optimal way to attain the median.

If our median is of the form K11K22K3 we have

dKT (K11K22K3,A) =

1︷ ︸︸ ︷
a(2k1 + k2) +

2︷ ︸︸ ︷
a(k2 + 2k3) +

3︷ ︸︸ ︷
1(1 + k1 + 2k2 + k3) +Cα

= 2ak + 1 + k1 + 2k2 + k3 + Cα,



where terms 1, 2 and 3 capture the distance with respectively the permutations
σi, 1 ≤ i ≤ a, the permutations πi, 1 ≤ i ≤ a, and the permutation γ of A,
for the pairs (1, x), (2, x) and (1, 2), x ∈ K. The cost for the pairs (x1, x2),
x1, x2 ∈ K, is counted in Cα.

Following the same logic, if our median is of the form K12K21K3, we have

dKT (K12K21K3,A) = a(2k1 + k2 + 1) + a(k2 + 2k3 + 1) + 1(k1 + k3) + Cα

= 2ak + 2a+ k1 + k3 + Cα.

If we try to minimize dKT (K11K22K3,A), we will have to put all the k
elements of K in either K1 or K3 because putting them in K2 will have a doubled
penalty for the cost. Doing so, the minimal cost for K11K22K3 is 2ak+1+k+Cα.
Now, if we try to minimize dKT (K12K21K3,A), we will have to put all the k
elements of K in K2 because putting them in either K1 or K3 will give a penalty
whereas K2 is ”silent” in the cost function. So, the minimal cost for K12K21K3

is 2ak + 2a + Cα. Since it is stated in the proposition that k > 2a − 1, the
minimal cost ofK11K22K3 is strictly greater that the minimal cost ofK12K21K3

(2ak + 1 + k + Cα > 2ak + 2a+ Cα).
This gives us that median permutations π∗ of A are of the general form

K12K21K3, where K1 and K3 are empty. Thus π∗ is of the form 2K1 or more
precisely π∗ = 2α1, where α be any optimal arrangement for the elements of K
with respect to A. Element 2 is favored to element 1 in the median, regardless of
the big proportion of permutations of A favoring 1 to 2, which finish the proof
of non-existence of a %-majority bound.

Other tables:

Table 1: Efficiency of the Major Order theorem 1.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table 4)

m\n 8 10 15 20 25 30 40 50 60 80 100

3 0.4560 0.4155 0.3603 0.3339 0.3170 0.3056 0.2914 0.2840 0.2785 0.2712 0.2667
4 0.3672 0.3224 0.2595 0.2274 0.2071 0.1939 0.1768 0.1673 0.1608 0.1514 0.1470
5 0.3076 0.2591 0.1928 0.1597 0.1403 0.1272 0.1110 0.1011 0.0943 0.0859 0.0823
10 0.1449 0.1004 0.0530 0.0344 0.0251 0.0198 0.0139 0.0108 0.0089 0.0068 0.0058
15 0.0734 0.0432 0.0165 0.0085 0.0052 0.0036 0.0020 0.0014 0.0010 0.0006 0.0005
20 0.0387 0.0193 0.0054 0.0022 0.0011 0.0007 0.0003 0.0002 0.0001 0.0001 0.0000
25 0.0209 0.0088 0.0018 0.0006 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0114 0.0041 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 0.0063 0.0020 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0035 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45 0.0020 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50 0.0011 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Table 2: Efficiency of the Major Order theorem 2.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table 4)

m\n 8 10 15 20 25 30 40 50 60 80 100

3 0.6292 0.5784 0.4981 0.4513 0.4194 0.3962 0.3651 0.3462 0.3324 0.3139 0.3020
4 0.5652 0.5333 0.4711 0.4265 0.3923 0.3661 0.3268 0.3003 0.2801 0.2504 0.2320
5 0.5966 0.5469 0.4648 0.4131 0.3761 0.3479 0.3073 0.2781 0.2555 0.2232 0.2033
10 0.5730 0.5253 0.4435 0.3886 0.3493 0.3193 0.2749 0.2439 0.2197 0.1878 0.1656
15 0.5929 0.5377 0.4453 0.3863 0.3448 0.3129 0.2679 0.2361 0.2122 0.1791 0.1561
20 0.5820 0.5310 0.4415 0.3832 0.3415 0.3097 0.2647 0.2323 0.2089 0.1750 0.1523
25 0.5979 0.5396 0.4444 0.3842 0.3415 0.3099 0.2625 0.2317 0.2074 0.1736 0.1500
30 0.5878 0.5349 0.4426 0.3828 0.3403 0.3082 0.2616 0.2293 0.2055 0.1715 0.1498
35 0.5996 0.5419 0.4455 0.3843 0.3407 0.3083 0.2612 0.2285 0.2050 0.1711 0.1481
40 0.5922 0.5374 0.4439 0.3828 0.3402 0.3070 0.2603 0.2288 0.2038 0.1707 0.1483
45 0.6016 0.5435 0.4461 0.3848 0.3405 0.3084 0.2615 0.2278 0.2038 0.1708 0.1472
50 0.5956 0.5395 0.4440 0.3833 0.3402 0.3072 0.2600 0.2284 0.2037 0.1700 0.1467

Table 3: Efficiency of the Major Order theorem 3.0 on sets of uniformly dis-
tributed random permutations, from n = 8 to n = 100, m = 3 to m = 50,
statistics generated over 100 000 instances for smaller n to 2000 instances for
bigger n (see Table 4)

m\n 8 10 15 20 25 30 40 50 60 80 100

3 0.7642 0.7179 0.6345 0.5792 0.5378 0.5059 0.4608 0.4312 0.4086 0.3775 0.3563
4 0.6010 0.5757 0.5201 0.4761 0.4406 0.4127 0.3700 0.3404 0.3176 0.2833 0.2612
5 0.7381 0.6853 0.5813 0.5046 0.4470 0.4038 0.3456 0.3073 0.2793 0.2413 0.2191
10 0.6440 0.6019 0.5173 0.4515 0.4012 0.3617 0.3040 0.2649 0.2354 0.1979 0.1726
15 0.7392 0.6732 0.5445 0.4581 0.3987 0.3544 0.2946 0.2543 0.2254 0.1869 0.1612
20 0.6739 0.6262 0.5248 0.4484 0.3917 0.3486 0.2896 0.2491 0.2209 0.1819 0.1566
25 0.7463 0.6774 0.5440 0.4557 0.3939 0.3497 0.2867 0.2480 0.2186 0.1800 0.1540
30 0.6899 0.6391 0.5307 0.4496 0.3904 0.3464 0.2852 0.2448 0.2164 0.1775 0.1536
35 0.7490 0.6804 0.5467 0.4563 0.3928 0.3474 0.2846 0.2438 0.2156 0.1770 0.1517
40 0.7008 0.6473 0.5349 0.4505 0.3905 0.3448 0.2833 0.2438 0.2142 0.1764 0.1518
45 0.7522 0.6836 0.5484 0.4570 0.3924 0.3473 0.2847 0.2427 0.2141 0.1764 0.1507
50 0.7095 0.6533 0.5367 0.4518 0.3908 0.3450 0.2827 0.2431 0.2138 0.1755 0.1501

Table 4: Number of instances generated and calculated for each couple m\n
(depending only on n)

n 8 10 15 20 25 30 40 50 60 80 100

# instances 100000 100000 100000 100000 100000 50000 20000 10000 8000 4000 2000
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