Tournées de véhicules

Robin Milosz

IFT6370

11 avril 2017

Robin Milosz (LBIT)

Tournées de véhicules

11 avril 2017 1 / 22

э

< ∃→

< < >> < <</>

Introduction

Coupes et séparation

- Capacity (RCI)
- Framed capacity (FCI)
- Strengthened comb, Multistar and Hypotour

Branch-and-Cut

- Séparation
- Branchement et Séléction de noeud
- Out pool

Robin Milosz (LBIT)

Problème de tournées de véhicules avec capacité

Figure: Capacitated Vehicule Routing Problem

Robin Milosz (LBIT)

Tournées de véhicules

11 avril 2017 3 / 22

Problème de tournées de véhicules avec capacité)

ł

Robin Milosz (LBIT)

Tournées de véhicules

11 avril 2017 4 / 22

Problème de tournées de véhicules avec capacité

Figure: Capacitated Vehicule Routing Problem

Robin Milosz (LBIT)

Tournées de véhicules

11 avril 2017 5 / 22

Modélisation (CVRP)

Graphe complet G = (V, E), clients: $V_c = V \setminus \{0\}$

$$min \sum_{e \in E} c_e x_e$$

sujet à:

$$egin{aligned} &x(\delta(\{i\}))=2, &(i=1,...,n)\ &x(\delta(S))\geq 2r(S), &(S\subseteq V_c,|S|\geq 2)\ &x_{ij}\in\{0,1\}, &(1\leq i< j\leq n)\ &x_{ij}\in\{0,1,2\}, &(i=0,j=1,...,n) \end{aligned}$$

₩

< ロ > < 同 > < 回 > < 回 > < 回 > <

Modélisation (CVRP)

Graphe complet G = (V, E), clients: $V_c = V \setminus \{0\}$

$$min \sum_{e \in E} c_e x_e$$

sujet à:

$$egin{aligned} &x(\delta(\{i\})) = 2, \quad (i = 1,...,n) \ &x(\delta(S)) \geq 2r(S), \quad (S \subseteq V_c, |S| \geq 2) \ &x_{ij} \in \{0,1\}, \quad (1 \leq i < j \leq n) \ &x_{ij} \in \{0,1,2\}, \quad (i = 0, j = 1,...,n) \ &r(S) o BPP, ext{ alors utiliser } k(S) = \lceil q(S)/Q \rceil ext{ (RCI)} \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Solution LP: x*

Graphe associé: $G^* = (V, E^*)$, où $E^* = \{e \in E | x_e^* > 0\}$

$$G_c^* = (V_c, E_c^*)$$
, où $V_c = V \setminus \{0\}$

イロト イヨト イヨト イヨト

1ère heuristique RCI

Figure: RCI sur composantes connexes de G_c^* et de G^*

Réduction de graphe (safe shrinking)

Iterativement, candidats:

- |*S*| = 2,3
- k(S) = 1 avec coupe RCI déjà généré
- $x(\delta(S)) = 2$ imposé par branchement

2e heuristique RCI

Fractionnal capacity: 2q(S)/Q

$$2r(S) \ge 2k(S) = 2\lceil q(S)/Q \rceil \ge 2q(S)/Q$$

Vérifier 2q(S)/Q: flôt maximal, temps polynomial

Réduire l'écart des RCI

3e heuristique RCI

Heuristique gloutonne

Construire S en minimisant les variable d'écart

4e heuristique RCI

Repasser par les coupes RCI

Jouer avec les supersommets (supervertices)

Framed capacity (FCI)

$$\Omega = \{S_1, ..., S_p\}, \quad S \subseteq V_c$$

 $r(S, \Omega) = min$ vehicules |RCI avec egalite stricte pour S_i

$$x(\delta(S)) + \sum_{i=1}^{p} x(\delta(S_i)) \ge 2r(S, \Omega) + 2\sum_{i=1}^{p} r(S_i)$$

Robin Milosz (LBIT)

Strengthened comb, Multistar and Hypotour

Strengthened comb

$$egin{aligned} \mathcal{S}(H, T_1, ..., T_t) &:= \sum_{j=1}^t (\widetilde{r}(T_j \cap H) + \widetilde{r}(T_j \setminus H) + \widetilde{r}(T_j)) \ x(\delta(H)) + \sum_{j=1}^t x(\delta(T_j)) &\geq \mathcal{S}(H, T_1, ..., T_t) + 1 \end{aligned}$$

Strengthened comb, Multistar and Hypotour

Multistar

$$\begin{aligned} \alpha x(E(N)) + \beta x(E(N:S)) &\leq \gamma, \quad S \subset V_c \setminus N \\ \alpha x(E(N)) + \beta x(E(C:S)) &\leq \gamma, \quad C \subset N \end{aligned}$$

Hypotour

$$x(F) \ge 1$$

 $x(\delta(W)) + 2x(F) \ge 2x_{e_1} + 2x_{e_2}$

11 avril 2017 14 / 22

Branch-and-Cut

Robin Milosz (LBIT)

Tournées de véhicules

э

< ∃→

Séparation

Racine

Noeuds

Robin Milosz (LBIT)

11 avril 2017 16 / 22

Branchement

$$(x(\delta(S)) = 2) \land (x(\delta(S)) \ge 4)$$

prendre S tel que $x^*(\delta(S)) \sim 3$

$$egin{aligned} S_i o LB_i^1, LB_i^2 \ S_i ext{ vs } S_j \colon ig LB_i^- ig > ig LB_j^- ig ext{ puis } ig LB_i^+ ig > ig LB_j^+ \end{aligned}$$

Séléction de noeud

Best bound first (et plus profond)

Cut pool

Garder LP petit Si LP réoptimisé, regarder dans le pool et réoptimiser au besoin Dans les noeuds, "flusher" les coupes au fur et à mesure

Robin Milosz (LBIT)

Tournées de véhicules

Table: Exemple résultats

				Root node		Branch-and-Cut	
Instance	Q	loading	UB	LB	Time	Time(LB)	Tree size
E-n22-k4	6000	0.94	375*	375*	2	-	-
E-n23-k3	4500	0.75	569*	569*	2	-	-
E-n30-k3	4500	0.94	534*	534*	14	-	-
E-n33-k4	8000	0.92	835*	834.707	12	16	3
E-n51-k5	160	0.97	521*	519	24	59	17
E-n76-k7	220	0.89	682*	666.408	72	118683	8631
E-n76-k8	180	0.95	735*	717.852	136	(729)	2321
E-n76-k10	140	0.97	830	799.878	158	(816)	2209
E-n76-k14	100	0.97	1021	969.609	181	(986)	2081
E-n101-k8	200	0.91	815*	802.646	222	(811)	1621
E-n101-k14	112	0.93	1071	1026.94	555	(1040)	917
F-n45-k4	2010	0.90	724*	724*	6	-	-
F-n72-k4	30000	0.96	237*	237	38	40	3
F-n135-k7	2210	0.95	1162*	1160	155	3092	265
M-n101-k10	200	0.91	820*	820*	33	-	-

Robin Milosz (LBIT)

æ

< E

<ロ> < 回 > < 回 > < 回 >

Nouveauté

premier à résoudre:

- B-n50-k8
- B-n66-k9
- B-n78-k10

de Augerat

э

< ∃→

< < >> < <</>

Merci

Robin Milosz (LBIT)

Tournées de véhicules

11 avril 2017 21 / 22

æ

æ

< □ > < □ > < □</p>

- J. Lysgaard, A.N. Letchford, R.W. Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing problem, Math. Program., Ser. A 100 (2004), pp.423–445 doi: 10.1007/s10107-003-0481-8
- P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, G. Rinaldi, *Computational results with a branch-and-cut code for the capacitated vehicle routing problem*, Research report RR949-M. ARTEMIS-IMAG, France, (1995)
- N. Christofides, S. Eilon An algorithm for the vehicle dispatching problem, Oper. Res. Quarterly 20 (1969), pp.309–318

< ロ > < 同 > < 回 > < 回 > .