Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem

Robin Milosz^{1,2}, Sylvie Hamel¹ and Adeline Pierrot²

¹ Université of Montréal, Montréal, Canada, ² Université of Paris-Sud, Paris, France

IWOCA 2018, Singapore

Outline

Introduction

Previous works

3 Main result

- 3-Cycle Theorem
- Sketch of proof
- Significance
- Link with 3-Hitting Set problem

Introduction

Figure: What activity would you like to do this weekend?

Introduction

Figure: Children respond by ordering the 5 candidates activities

Introduction

Figure: The mother finds a consensus using the median of permutation problem!

Introduction - Model

$$\pi_{1}:[4,5,1,2,3]$$

$$\pi_{2}:[1,5,3,4,2]$$

$$\pi_{3}:[5,2,3,4,1]$$

m = 3, n = 5

Kendall- τ distance

Given two permutations $\pi, \sigma \in S_n$, this distance counts the number of order disagreements between pairs of elements:

$$Kt(\pi, \sigma) = \#\{(i, j) | i < j \text{ and } [(i \prec_{\pi} j \text{ and } j \prec_{\sigma} i) \text{ or } (j \prec_{\pi} i \text{ and } i \prec_{\sigma} j)]\}$$

Kemeny Score

Given any set of permutations $\mathcal{R} \subseteq S_n$ and a permutation $\pi \in S_n$, the *Kemeny score* is defined as:

$$K(\pi, \mathcal{R}) = \sum_{\sigma \in \mathcal{R}} Kt(\pi, \sigma)$$

R. Milosz, S. Hamel and A. Pierrot

The median permutation

Given $\mathcal{R} \subseteq S_n$, we want to find a permutation $\pi^* \in S_n$ such that:

 $K(\pi^*, \mathcal{R}) \leq K(\pi, \mathcal{R}), \ \forall \ \pi \in \mathcal{S}_n.$

Quick overview of previous works

Electoral System: "Kemeny-Young Method"

H.P. Young and A. Levenglick, SIAM Journal on Applied Mathematics, 1978

• Complexity: NP-Hard for $m \ge 4$, *m* even and $m \ge 7$, *m* odd, but $m \in \{3, 5\}$ is unknown

C. Dwork and al. Proceedings of the 10th WWW, 2001

G. Bachmeier and al. arXiv: http://arxiv.org/abs/1704.06304v1, 2017

Heuristics and Algorithms

F. Schalekamp and A. van Zuylen Proceedings of the 11th SIAM ALENEX, 2009

A. Ali and M. Meila Mathematical Social Sciences, 2012

Space reduction techniques

M. Truchon 19th National Conference on AI, 1998

- G. Blin and al. Pure Mathematics and Applications, 2011
- N. Betzler and al. Autonomous Agents and Multi- Agent Systems, 2014
- R. Milosz and S. Hamel Lecture Notes in Computer Science, 2016

Lower bounds

- A. Davenport and J. Kalagnanam 19th National Conference on AI, 2004
- V. Conitzer and al. 21st National Conference on AI, 2006

R. Milosz, S. Hamel and A. Pierrot

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem

Main result - Majority graph

$$\pi_{i}[4,5,1,2,3] \\ \pi_{i}[1,5,3,4,2] \\ \pi_{i}[5,2,3,4,1] \\ \pi_{i}[5,2,3,4,1]$$

Figure: The majority graph of the set $\mathcal{R} = \{[4, 5, 1, 2, 3], [1, 5, 3, 4, 2], [5, 2, 3, 4, 1]\}$. Bold edges have weight 3 and thin edges have weight 1.

Main result - 3-Cycle Theorem

3-Cycle Theorem

Let $\mathcal{R} \subset S_n$ be a set of 3 permutations. Let $G_{\mathcal{R}} = (V, E)$ be its majority graph. Let π^* be any median permutation of \mathcal{R} . If an edge (i, j) of $G_{\mathcal{R}}$ is not contained in any 3-cycle, then $i \prec_{\pi^*} j$.

Figure: The majority graph of the set

 $\mathcal{R} = \{[4, 5, 1, 2, 3], [1, 5, 3, 4, 2], [5, 2, 3, 4, 1]\}$. Bold edges have weight 3 and thin edges have weight 1. The 3-cycles are shown with dashed edges.

Main result - Sketch of proof

Let (i, j) be a pair of elements such that the corresponding edge is not contained in any 3-cycle. Now suppose by contradiction: $\pi^* = ...jKi...$. We separate the set *K* of elements in 5 classes:

Figure: A black arrow is a preference relation, a blue bold arrow is an "Always" relation and a red two-sided dotted arrow is an unknown relation.

Main result - Sketch of proof

3-Cycle Theorem

Let $\mathcal{R} \subset S_n$ be a set of 3 permutations. Let $G_{\mathcal{R}} = (V, E)$ be its majority graph. Let π^* be any median permutation of \mathcal{R} . If an edge (i, j) of $G_{\mathcal{R}}$ is not contained in any 3-cycle, then $i \prec_{\pi^*} j$.

Significance of the 3-Cycle Theorem

- It includes all previous spaces reductions techniques for m = 3 permutations.
- Improves lower bound results for m = 3 permutations.
- When combined with an ILP solver (i.e. CPLEX), it improves the solving time for randomly generated data sets (1.6x, 48% pairs ordered) as well as for real data sets (3.7x, 87% pairs ordered) with m = 3.

3-Cycle Conjecture for *m* odd

Let $\mathcal{R} \subset S_n$ be a set of *m* permutations with *m* odd. Let $G_{\mathcal{R}} = (V, E)$ be its majority graph. Let π^* be any median permutation of \mathcal{R} . If an edge (i, j) of $G_{\mathcal{R}}$ is not contained in any 3-cycle, then $i \prec_{\pi^*} j$.

Main result - 3-Hitting Set as a lower bound

Figure: 3-Hitting Set problem with \mathcal{E} as the set of involved edges I_E and T the set of 3-cycles from the example. In this case, selecting edge $e_{3,4}$ covers all 3-cycles thus $S = \{e_{3,4}\}$ and #S = 1. Reversing this edge in the original majority graph makes the majority graph acyclic.

3-Hitting Set Conjecture for 3 permutations

Let $\mathcal{R} \subset S_n$ be a set of *m* permutations with *m* odd. Let $G_{\mathcal{R}} = (V, E)$ be its majority graph. Let I_E be the set of edges involved in 3-cycles and *T* the set of 3-cycles. For any optimal solution *S* of the 3-Hitting Set problem, a median permutation can be constructed by reversing all edges $(i, j) \in S$ in the majority graph and taking the topological ordering.

In short: Solving the median of 3 permutations problem (M3P) amounts to solving a 3-Hitting Set problem (3HS)!

Significance: ILP solving 19x faster on random data sets and 187x faster on real data sets (from PrefLib.org*)

*N. Mattei and T. Walsh, *Lecture Notes in Artificial Intelligence*, 2013

3-Hitting Set Conjecture for 3 permutations

Let $\mathcal{R} \subset S_n$ be a set of *m* permutations with *m* odd. Let $G_{\mathcal{R}} = (V, E)$ be its majority graph. Let I_E be the set of edges involved in 3-cycles and *T* the set of 3-cycles. For any optimal solution *S* of the 3-Hitting Set problem, a median permutation can be constructed by reversing all edges $(i, j) \in S$ in the majority graph and taking the topological ordering.

In short: Solving the median of 3 permutations problem (M3P) amounts to solving a 3-Hitting Set problem (3HS)!

Significance: ILP solving 19x faster on random data sets and 187x faster on real data sets (from PrefLib.org*)

*N. Mattei and T. Walsh, Lecture Notes in Artificial Intelligence, 2013

- The median of permutations is an NP-Hard, but the m = 3 case is an open question
- The 3-Cycle theorem is a strong space reduction technique
- We conjecture that it holds for *m* odd
- The 3HS gives a very tight lower bound
- We conjecture that solving the M3P amounts to solving a 3HS

Questions?

Thanks!

Selected references

- J. Kemeny, *Mathematics without numbers*, Daedalus, 88, pp.577–591, 1959.
- H.P. Young and A. Levenglick, *A consistent extension of condorcet's election principle*, SIAM Journal on Applied Mathematics, (C35), pp.285–300, 1978.
- H.P. Young, Condorcet's Theory of Voting, American Political Science Rev., 82(4), pp.1231–1244, 1988.
- C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank Aggregation Methods for the Web, in proceedings of the 10th WWW, pp.613–622, 2001.
- A. Ali, M. Meilă, *Experiments with Kemeny ranking: What works when?*, Mathematical Social Science, 64, pp. 28–40, 2012.
- G. Blin, M. Crochemore, S. Hamel and S. Vialette, *Median of an odd number of permutations*, Pure Mathematics and Applications, 21 (2), pp. 161–175, 2011.
- N. Betzler, R. Bredereck, R. Niedermeier, *Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation*, Autonomous Agents and Multi-Agent Systems, vol. 28, pp.721–748, 2014.
- V. Conitzer, A. Davenport, and J. Kalagnanam, *Improved bounds for computing Kemeny* rankings, Proceedings of the 21st conference on Artificial intelligence - Volume 1, AAAI'06, pp. 620–626, 2006.

